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I .  INTRODUcTION

This technical  report , which is the last in a series , covers new

results in l inear restorat ion of blurred photon—limited images. Our most

recent previous technical  report t i) is h ighly  recommended as background

for this report , and we shall freely call upon results derived there.

However , this  report does contain a brief rev iew (together wi th  some

minor corrections) of the earlier work .

For the purposes of motivat ion , we should mention at the start why

we are interested in space—variant linear restoration of degraded images .

Compensated imaging systems correct for atmospheric blur over only a fi-

nite field (the so—called “isoplanatic region”). If objects larger than

this field are encountered , the blur present in the image will be markod]y

space—variant . Furthermore , while conventional linear restoration theor-

ies assume stationary object statistics , in practice, real ensembles of

objects are usually nonstationary in one or more attributes. Both space—

variant blurs and nonstationary objects 1~ad to space—variant filtering

as a desired approach .

Section II  to follow contains the review mentioned above . In Section

III, we describe an algorithm for finding a linear restoration filter

tha t maximizes the particular image qual i ty  criterion adopted here . Sec-

tion IV gives the results  of a stud y of restoring photon-limited images

with linear sh i f t—var i an t  restoration f i l te rs.

I I .  EQU.VF IONS FOR THE D TSCRET E SPACE—VAR IANT RESTORA T ION PROBLE M

As statcd above , in th i s  section we give a review of the discrete

n o t a t i o n  and ~ quu t. !Mn~ LI ~~c’d in our stud y of space—var ian t  res tora t ion

1
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of photon—limited  images . Dur ing this review , we wi l l  show some correc-

tions to the equations given in Section IV of reference 1.

(a) Discrete Notation

The physical process of the formation of an image is modeled by a

linear matrix expression . The continuous object radiance distribution is

represented by a column vector 0 whose elements are M equally spaced

samples. The use of lexicographic ordering to represent two-dimensional

object and image distributions is discussed in reference 1.

The formation of an image from the object is modeled by the equation

![B1
~~~

. (1)

Here, the image intensity distribution is represented by the M
i 

elements

of the column vector i. The blur matrix [B) consists of M
1 

samples

of each of the M impulse responses of the imaging-blurring system . In

general , the number of samples of the image M1 
might not equal the num-

ber of samples of the object M .

The detected image vector ci consists of , again in general, Md 
ele-

ments , each of which represents the photocount from one element of a dis-

crete array of photodetectors . In our work, we have assumed that

and that the 5
th 

elettent d~ of 1 depends directly on only the nth

element I of 1. In fact , we model the image detection process by

assuming that d
n is Poisson distributed with mean rate

(2)

2
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where A is i.~e area of a detector element , and T is the observation

interval.

The detected Image d is restored by linear filtering with the

restoration filter [II]. This filter will be chosen to make the restored

image r, given by

(3)

as “close” as possible to an “ideally filtered” object

(4)

Here, (~‘1 is an M~ )< M
0 matrix of samples of the impulse response of

an ideal filter. The normalization indicated by ‘~ was defined in refer-

ence 1. In general, therefore, the filter [HI is of dimension M_XM
d
.

(b) Minimum Mean-Squared-Error Filter

One method of making the restored image r “close” to the ideally

filtered image ~ is to minimize the mean-squared value of the error

column vector € given by

€ = ~~~- r = [~I o - t H I d .  (5)

Thus , we wish to minimize the quant i ty

= E{E
t
E} = E{Tr (EE t

)} (6)

where t signifies matrix transpose , E is the statistical expectation

operator, and Tr( ) is the ma t r ix  trace operation .

Referr ing to reference 1 for the der iva t ion  of the fo l lowing re-

sults , the mean-squared-error, in general , is g iven by

3
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= Tr~~HJ (~[[
~) 

~
] + ~2

t~ it~ 1~~~1
t) 
[~1J

t

— 2kN
2[~](~~1[~]

t
[HIt + k

2
N

2 (Si(~~~][S I
t 

. ( 7 )

An alternate form of the mean—squared—error actually used in calculations

is

= Tr{k
2
~

2 (~ I [~~I [~ 1t + ~~~H]([~~~~~
)

+ ~ [~][~~I [~ ]
t) 

- 2k~[~I[~~][~]
t) 

(HI
t}. 

(8)

The appropriate minimum mean—squared-error filter can be found in the

literature [2] and is given by

fr~_ ,.  
~~ ~~tH “‘.. ~ -~~~~~ - ~~t l

~~MMSE
1 = kN[S][~tI [B] ( [B] 2 I + N[B]tER0

I(B] j . (9)

\Lo J
This filter will , in general, be space variant and nonsquare , depending

A A
on the properties and sizes of [SI , [B], a, and [ER].

In order to study the performance of a given restoration filter ,

sonic measure of iI:lnge quality must be defined . We have chosen to de f ine

image qua l i ty  Q by

- ~~~~~ . - . .  ~~~. ~~~ -- .~~~ .- ~~~-- .  ~~~~~ . — ~~~~~~~~~~~~~~~ — --- . .—



Q~~~~ (10)

where 5 is the mean—squared—error and ~ is the expected signal en-

ergy at the output given by

~ ~~~
_2 

~r ] t ~] ” J~~ ]t t)  . (11)

Substitution of the minimum mean-squared-error f i l te r  
~~~~~~~ 

into one

of the expressions for mean—squared-error , Eq. (7) or (8) , yields the

expression for the minimum possible mean—squared-error with linear res—

torat ion

k~~~ Tr~~~~~[~~~]~~~I] - [~]
t([

~~~[~l 

~
]

+ ] U ] [ ~ J t)  r~][~ ] ) [~ ]t) . (12)

(In reference 1, the corresponding equation , Eq. (36), has a misplaced

parenthesis.) In our compu tations , the alternative form

2—2 ‘“ ‘~ “ 1 A A
S = k N Tr ( f S ] f ~R J {S )~ — — [H ](B][g~ 

][sl t
) (13)mm \ 0 k MMSE 0

for the minimum mean—squared-error has been used . (The corresponding

Eq. (37) in reference 1 has an omission . Note here that the form of Eq.

(38) in reference I used for comparison to the continuous case is cor-

rect or~1y if all matrices in the cxpreSsit n are square , i.e • 
‘ ~f’ =

= M.... The more generally valid expression , requiring only M . =

iS

5
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6 • = k N  Tr If s ] [~R I f s ] I I [HI o f + NI B ] fc~ I [B) I fBI o
-

~~~~~~~~~~ ° I L°

(14 )

which in the square matrix case reduces to Eq. (38) , reference 1.)

Thus, we have several forms for the denominator of the expression

for Q. For the numerator , we substitute Eq. (9) into Eq. (11), yielding

/ ír ~ 01
2-4 !~~~ s A t !1 ~

‘ #~ ~~ I -~~~~~4
MMSE = k N Tr~ [S][~RI [B] [B] 0 ] + N [B ][H~~J U B ]

0

A ~~ 01 
-

~~~~~ A~~~~\ ~~ 
~~ 

A t(B] [H~~] [B ] 

~
j_ [B] o + N [BJ{~R0

I(B] ) tB I [9~0 J [sJ

(15)

(In reference 1, Eq. (43) contains an exponent error and Eq. (44) is more

correctly written

MMS E 
16

~MMSE 5mm

for the minimum mean—squared-error Q . )

As we show in Section I I I , we can improve on the performance pre-

dicted by Eq. (16). SpecIfically, we can do better than the minimum

mean-squared—error filter by using a filter which maximizes the quality

factor Q.

L 
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III. ?~L~XIMUM fl~LAGE QUALITY FIL TER

Equat ion (16) is not the maximUm obtainable Q using l inear res-

toration techniques . This is true because in minimizing the mean—squared—

error we are not necessarily maximiz ing  the ratio of signal to mean—

squared error . Thus, we would like to f ind the f i l t e r  tH
MQ I which

maximizes the image q u a li t y

~~~~~ 
. (10)

By following a procedure similar to tha t used for finding the minimum

mean—squared-error f i l t e r  (see Append ix A ) ,  two necessary conditions are

found for any EH~1Q
) producing a local maximum in Q:

_ 9 / A ‘.‘ 
~~~~~ t’ / —2 A ‘I A tN Tr (2 IH J [B) U~ I I D )  IG) I Tr (2 [H I ID) [H) — 2kN [01 [B] f~ ] US)MQ o / ‘~ MQ o

— S
(17)

and

- 

2~Q Tr 
([GI ([~~~

E~ I 

~~~~~ 

%ax 
]t~~]~~]

t) 
EG)
t) 

0

(18)

for all  matrices IG] , where in (17) expressIons (7) and (11) have been

used and

ir ~ 0~1
(I ~~~~~A I - A  ‘..~~~ A tED] = H [B) 0 + N [ H ) f~~~I f B ] . (19)

\Lo
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By rearranging terms , we find that condition (17) will be satisfied

if and only If

= ~~~~~~~~~~~~~~~~~~~~~~~~~ 

~
°] + ~~~

max 
1) ~~~~~~~~~~~~~~ (20)

and condition (18) if and only if (20) and

[
~~ A l  Q - l

I [.~) I + ~ f ~ ]f ~ ] f ~ ) t > [~J (21)
— Q 0

[o max

are satisfied , where [0) is a matrix of all zero elements . The m e —

quality (21), for our purposes , is simply an added condition which must

be satisfied by any Q sat isfying (20) .  It Is no help to us in

finding our maximum Q f i l te r . Note that , if the factor (Q -1)/Q
max max

is regarded as a s imple cons tant , the maximum Q f i l te r  d i f fe rs  from

the minimum mean—squared-error filter only by this simple internal pa-

rameter.

Equation (20) is not a true solution for the elusive maximum Q

filter since It is necessary to know a priori the value of 
~~ax’ 

and

in our studies we need [H I to find Q . In a real image restora-MQ max

tion system , however , this might not be a problem , as [HMQ) might , for

example, be determined experimentally from the minimum mean—squared—error

filter by manually adjusting the factor 
~ max ”%ax 

It should be

men4 ioned here that , not only Is it difficult to find a filter satisfying

(20) and (21), hut these are only necessary conditions for the maximum

Q f i l t e r .  These c o n d i t i o n s  guarantee oniy a loca l maximum in the Q— fH]

space .
8
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For the purposes of this study we have developed a procedure for

find ing the locally maximum Q f ilter (R~1Ql. The procedure may be

described as solving the fol lowing pa i r  of recursive equa t ions :

ir~. cn
1 A 

~
.‘ A t ! 1  ~~~~~~ A ~ I fQ4 1 - 1\  A A t

— (H I = tsI[~ 1 (B) I I [H] 0 I + N I —  I [B][~R ][B]
— i 0 I I  — i 

~ 
Q I okN \Lo ~ i—i /

(22 )
and

(H ](
~]Ct~ 11~~

t . ~~~~ 1t)
-2 \kN i 0 kF~ ~

— .

Tr((~)[~R 
] E ~)~ + I:i~ ][D 1 — 2[~~~[~ ][~ ]t

’~ 1 
~~° ° / k N

(23)

The solution is reached by performing these steps:

(1) choose an initial value Q by some method . (For this

Q ,  one might use the value of Q obtained by using

the space—variant or space—invariant minimum mean—

squared—error filter , or one might t ry  several values

for Q and choose that value which produces the larg-

est Q1
. Our experience is that , in most cases , a value

of Q slightly more than un i ty  works we l l .)

(2) Find [H
1
] from Eq. (22).

(3) Use [H1
) to compute Q1 us ing Eq. (23).

(4) Repeat steps 2 and 3 always using the latest for the

next cycle .

(5) Stop when the values of are no longer increasing .

(6) Check to insure a maximum ra ther than an inf lect ion point

by en t e r i ng  Eqs . (22) and (23 ) with several values of

on both sides of the f ina l  Q~ from step 4.

L ~ _ _  .

~~~~~~~~~~~~~~ 
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We ha ve ~‘ound , using this procedure , solutions for the maximum Q

fi l ter  much more easily than we had expected when the procedure was f i r s t

proposed . Also , although we have no guarantee that we have found the

global maximum in the Q-[H] space, we have tested a wide range of val-

ues of the factor (Q0
-1)/Q and have never found a Q higher than that

obtained from the maximum Q procedure .

IV. LINEAR SPACE-VARIANT FILTERING RESULTS

In this section , we present results of computer analysis of restored

Image quality possible when using linear space—variant restoration tech-

niques. We have used both minimum—mean—squared—error and maximuin—Q—algo—

rithm filters. We begin by describing the notation and some of the object

statistics and blur types used through Section IV.

(a) Computation Parameters

In our computer studies , we have treated several types of nonsta —

tionary objects and space—variant blurs. We usually allow either the

object statistics or the blur impulse response to be position dependent ,

but not both at once. Later, we will define the exact forms used for

those statistics and impulse responses. At this point , we shall describe

some general assumptions and define the types of space-invariant blur

and stationary object used throughout.

First, In all cases , we have restricted ourselves to one—d imensional

objects. During the period covered by this contract , the speed and stor-

age capabilities of the computer at our disposal were never sufficiently

large to allow two-d imensiona l image processing . In fact , in nearly all

of our stud ies , we restricted the image and object sizes to 35 p ixe l s .

10
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In onl y a few cases did we a l low object and image sizes to grow to 49

pixels.  In ~hese cases , we were checking for object-dependent changes

in image qua l i t y  due to edge effect  errors . As the object size grew ,

all  the Q curves shif ted upward s l i gh t ly  but a lways by nearly the same

amount .

As we stated in Section II, the sizes of the object , classical in-

tensity image, detected image , and ideal image , M , M1
, Md~ 

and M~ ,

respectively, will , in general , be different. This might be true due to

the physical realities of the imaging system or because it might be ad-

vantageous to choose them so. If, for instance , the impulse responses

of the actual blur and idea l blur are assumed to be spatially limited ,

the sizes of the vectors and matrices are often chosen to retain all

available information without suffering any unneeded storage penalty.

F In our stud ies , we have assumed more “realistic” blurs which are

band limited rather than space limited . These must necessarily be arti-

ficially truncated at a rather arb it rary point , espec iall y with our

rather severe space l imitat ions . We therefore have assumed that all

vectors have the same dimension and that all matrices are square , that

is , that

M = M = M = ?.L = M (24 )
0 i d

where M Is the assumed matrix and vector dimension. As stated above ,

fo r all cases presented here , M = 35.

Br ie f ly ,  with respect to notation , if vector a has elemen ts ai ,

then the index i is assumed to run from 1 to M. If matrix [A] has

elements [Al .., then the Index i runs along a column and j  runs

along a row from 1 to M .

11
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The idea 1 blur matrix used in all our calculations is a sinc
2

function sampled at the Nyquist rate . This sine
2 

impulse response

corresponds to a diffraction-limited one-dimensional aperture function .

Explicitly, the ideal filter matrix elements are

[si
fl = ~~~~~~~~~~~~~~ 

j)/2 ) 
. (25)

This equation is more simply written

1 i = j

[SI = 0 1 — j  even and I 
~~ 

j  . (26)

( 2 )
2 

1 - j  odd

In all our calculations , the blur used is a Gaussian blur with a

possibly position-dependent width . Explici t ly ,  it is

~ r~1) 
e~~

(
~~ (27)

where lxi means the smallest integer >x and w(x) = W
b , a constant ,

whenever a space—invariant blur is specified . The form of w(x)  for a

space—variant blur will be described later .

In all our work here, for both stationary and nonstationary object

ensembles , we assume the covariance matrix Is diagonal. That is, we as-

sume the obj~ct variation is uncorrelated from point-to—point in the ob-

ject .  For our s t a ti ona ry  object ensembles , the autocorrela t ion m a t r i x

is

12



= ci
2
[I) + k2N2

~~ tt (28)

where is the variance of the object , (II is the identity matrix ,

and 1. is a vector all of whose elements are unity. We have two degrees

of freedom here, the variance and the flux level, and in practice we

specify N and the object squared-mean to variance ratio ~ at the

center, defined by

—2o
1~!112 1

o IM1IM1
1 2 11 2 1

where o~ is the 1th element of the mean object vector and 
~~~~ 

is the

object covariance mat r ix .

The constant k is defined by

k = b r ~TA 
(30)

where b is the net energy transmittance of the imaging process. This

constant k has not been specified explicitly in our calculations for

two reasons. First, in all our results, we present image quality plotted

versus the mean number of photoevents per image rather than versus the

tota l mean object brightness . Thus , we have no need to translate total

brightness into total photoevents by using k. Second , we have implic-

itly assumed that all quantities in Eq. (30) are deterministic and known

a priori. Thus , the restoration f i l ter  can compensate for the effects

of the constant k and effectively remove k from our results .

13



(b) Space-Va’ last Blur

Here, we show results of restored image qua l i ty  for situations hav-

ing stationary object ensembles and space-variant blurs . We use minimum

mean-squared-error and maximum Q algori thm restoration f i l ters of both

•the space—invariant and space-variant types.

The space—variant blur we use is that of Eq. (27) with

— [
~1Iw(j) = W + (W — W ) (31)c e c 

fM
(2

where W and W
e 

are the widths at the center and edge , respectively.

A parabolic width function was also tested , and the results were very

similar to those presented here.

Figure 1 shows Q vs log10 N for several images restored with

minimum mean—squared—error filters. In part ~(a), the central object

mean—to—variance ratio ~ is 1 and , in (b), ~ is 20. In both parts ,

curves are shown for : (1) a space-invariant blur with Wb = 8 and with

its correspond ing space-invariant restoration f i l ter ; (2) a slightly

space-variant blur with W = 8 and W =l0 with a space-variant res—

toration filter ; and (3) a severely space-variant blur of W = 8 and

W
e = 16 also with a space-variant restoration filter. These curves

represent the best one can do with linear minimum mean-squared-error

restoration applied to these particular blurs . The Q values decrease ,

progressing from (1) through (3) in each part because, for a given N,

the filter cannot restore an image as well for larger average blurs .

14
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( 0 )

(b) 1

O
2~~~~~~~~~~

Log 
~

Fig . 1. Q vs log10 N with minimum mean—squared—error
filters . Different £~ values: (a) ~ = 1; (b) 1~ = 20.
Dif feren t  blurs : (1) space invariant , W~~= 8 ; (2) space
v a r i a n t , ‘I;

~~ = S and 
~~ 

= 10 ; (3) space va r i an t ,
w = 8, W = 16.
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In Fig . ‘ , Q is plotted for those same blurs of Fig . 1, but the

images have t een restored using a space-invariant minimum mean-squared-

error filter with W
b = 8 . As in Fig . 1, part (a) has t~ = 1 while

part (b) has A’= 20. The most obvious feature of this figure is the

greatly reduced restored image quality resulting when the space-invari-

ant filters are used with space—variant blurs . While the image quality

obtained , when the filter-blur type and width are matched to the type

and width of the blur , increases significantly with increasing N, the

image quality for unmatched filters actually approaches an asymptote .

More generally, as can be seen from Fig. 2 and other figures to

follow, we find that, whenever the filter blur does not match the actual

blur , the image quality is asymptotic . For the square , symmetric blur

matrices used in our calculations , this asymptote is approximately

~~~ 2~~’ 
_i , \ 2

Tr (~ [S~ J 
~ of

1 fB~ I ((B f ) (R
0f i) 

~ (32)

Tr
(((
[~I[~fI 

— [~~][~J)((
~~]2[~~~])

l 

)

2 
t~O
)(~Of

12)

where the subscript f indicates matrices used to form the particular

filter used . In all our calculations , we choose [S
f
] = [SI. This will

always be possible because the [SI used everywhere was our choice in

the beginning. Using this choice of [S
f
] and assuming [~f 

I and

have inverses, the asymptote (32) becomes

I / A  A - lA ~~
2

T r ( ( ~(S I [B I ( B ] )  [
~R I‘ ° . (33)

Tr
((f~

1 (re f 1 — [~ 1) rf~1r
2 [i~1) ~ 0 i)
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Fig . 2 . Q for restora t ion with a space-invariant minimum
mean—squared—error filter . Two ~ values : (a) ~~~~= 1;
(b) z~ = 20. Di f fe ren t  blurs : (1) space invariant , wb = S ;
(2) space variant , W~ = 8 and W~ = 10 ; (3) space vari-
an t , W 8, W = 16.
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The most important factor in this expression is the “blu r difference”

(Bf
) — (a]. f this d i f fe rence  is large , the value of the asymptote

approaches un i ty .

In Fig. 3, Q is shown for a severely space—variant blur of W = 8

and W
e 

16. In part (a) , ~ = 1, and in (b), ~ = 20. This blurred

Image has been restored using severa l space—variant and space—invariant

f i l ters . Curves are shown for minimum mean—squared—error f i l t e rs  matched

both to the space—variant blur and to space—invariant b lurs of widths

Wb = 4 , 8, and 12. Points indicated by small circles are for restoration

with a maximum Q algorithm filter. Crosses show restoration with a

space—invariant maximum Q algorithm filter with W
b = 8. There are

only a few of these points plotted because the algorithm does not guar-

antee a maximum unless it is allowed to be space variant. Here, as in

most cases we have encountered , the-maximum Q value falls approximately

one unit above the minimum mean—squared—error filter value of Q.

An interesting phenomenon appears in part (a). The space—invariant

minimum mean—squared—error filter has performed slightly better than the

space—variant minimum mean—squared-error filter for small N. Later , in

Fig. 5, we shall present an even more pronounced example of this phenom-

enon. It is not as disconcerting as it might scent to see the space—in-

variant filter perform better than the space-variant filter since , as we

mentioned in Section III , minimiz ing the mean-squared-error does not

necessarily maximize the image quality Q. In a sense , this “better

performance” of the space—invariant filter is jus t  an accident . By

chance , the mismatched blur has introduced an approximation to the fac-

tor (Q—1)/Q of the maxlmum—Q—algorithm filter. This mismatch could

just as well have decreased the effectiveness of the filter.
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( a )

10—

Q

5 —

I
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L og 

~~
Fig . 3. Q for space—variant , Wc = S and We =l6 , b lui .

Two ~ values : (a) A = 1; (b) A 20. Several minimum
mean—squared—error filters : (1) space variant , W~ = 8
and We = 16; (2) space invariant , Wb = 4 ; (3) space
invariant , “b 8: (1) cpn~~ invariant , Wb = 12 . Twn
iua xi in u tn —Q— a I g o r i  t h ~i f i l t e r s  : (C) Spa Ce variant , Wc = 8,

16 ; ( -‘- ) space i n v a r i a n t , ~ b 8 .
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Figure 4 a~ ows Q for a slightly space—variant blur with =

and W 10, with both space—variant filtering and space—invar iant

W
b 

8 filtcring. Part ( a )  is for  A = 1, and part (b) is for A=20 .

Circles are for  maximum Q algorithm filtering . Note here that the

space—invariant filter results are asymp tot ic to a d if ferent  level for

large N than are the severely space—variant blur results. Two other

features come to l ight if Fig . 4 is compared to Fig . 3. First , as seen

in Figs . 1 and 2 , the genera l performance here is better than for the

severely space—variant blur . Second , the blur mismatch here is not suf-

ficiently large to allow the space-invariant minimum mean—squared—error

filter to produce better image quality than the space-variant minimum

mean—squared-error filter.

Figure 5 g ives Q for a space-variant blur with W = 16 and

W = 32. As before , part (a)  has A = 1, and (b) has A = 20 . Curves

are shown for a matched space—variant filter and space—invariant filters

matched to W
b 

= 12 , 16 , 24 , and 32. Smal1~ circles show f iltering with

a maximum Q al gorithm f i l t e r . Note carefu l ly  that this figure has a

different scale than all others in Section IV. Here , the severity of

the blur lowers the curves well below those of the previous f igures .  As

mentioned above , in Fig . 5(a) we have a dramatic example of the space-

Invariant minimum mean-squared—error filters performing better than the

space—variant minimum mean-squared-error filter . Here , the severe mis-

match of the blur allows good acc idental approximation of the maximum Q

filter over a range of N. In addition , the mismatch is enough to force

the space—invariant filters ’ performances to the large N asymptote ’s

minimum value of unit -v.
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Fig. 4. Q for space—variant , W~ =8 and We lO blur .
Two A values : (a) A = 1; (b) A 20. Several minimum
mean—squared —error f i l t e r s : (1) space var ian t , W~ 8
and V;

0 = 10 ; (2) space invar ian t , V~~, 8. Also , (0)
max imum Q f i l t e r .
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Fig. 5. Q for space—variant , W~~= l 6  and W
~~
=32 , blur .

A values : (a) A = 1 ; (b) A = 20. Several minimum
mean—squared—error filters : (1) space variant , W~ = 16
and W0 = 32 ; ~2 )  space invariant , ~~ = 12; (3) space
invariant , Wb 16; (4) space invariant , Wb = 24 ; (5)
space invariant , Wb = 32 .  (3)  Ma x imum Q filtering .
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(c) Nonstationary Object

Here , we give resulting Image quality when nonstationary object en-

sembles are blurred with a space—invariant blur . We study the full range

of minimum mean—squared—error and maximum Q algorithm filters , both

space—variant and space—invariant cases .

We consider two different contributions to the nonstatlonary sta-

tistics of the object ensemble: the mean and the covariance. We allow

both of these to be position dependent , individually and together. When

we indicate nonstationary mean , we are using o of the form

= (34)

where W is an object width parameter and

1 —  ~x ( for fx f < i
A(x) = . (35)

0 for x I > 1

For those cases where we use a nonstationary covariance, the form Is

0 for i~~~j

= 

— [~J 
(36)

A2(_~~/2
2 ) for I = j

In all of Section IV(c), the blur Is space invariant with W
b = 8.

Figure 6 shows Q for three different nonstationary object ensem-

bles with A = 1. The upper three curves are restored using the appro-

priate space—variant  minimum moan—squared -error f i l t e r s. The lower three

23
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tog10 fi
Fig. 6. Q vs log10 N for different nonstationary object statistics:
(1) & (4) nonstationary mean ; (2) & (5) nonstationary covariance ; (3) &
(6) nonstationary mean and covariance. Different filters used are:
(1), (2),& (3) space—varIant minimum mean—squared error filters ; (4),
(5), & (6) space-invariant minimum mean-squared—error filters.

15

tog 10 N

FIg. 7. Q for d i f f e r e n t  nonstafionary object statistics : (1) nonsta—
t ionary mean ; (2) nonstatlonary covariance ; (3) nonstationary mean
and covariance .
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curves corj espond to restora t ions obtained using space—invar iant  min i m um

mean—square4—error f i l t e r s . The three curves in each group include an

object ensemble with : (1) only the mean nonstationary, (2) with on ly

the variance nonstationary, and (3) with both the mean and variance non—

stationary. As can be seen , there is little difference for the three

types of nonstationarity. The most pronounced feature of the curves

here is the gap between the group of three space-invariant filter curves.

The nonstationary mean curve is almost as high as the space—variant

filter curves. The two curves showing space—invariant filters used with

nonstationary object variances show definitely lower performance .

FIgure 7 has curves plotted for the maximum Q filter restoring

the three types of nonstationarity listed for Fig. 6. Here , there is

even less difference between the performances under different object

statistIcs . The maximum Q algorithm seems to compensate optimally

for each of the different object ensembles. Aga in, the maximum value

of Q is approximately one unit higher than tl~e minimum mean-squared-

error value.

In Fig. 8, Q Is plotted for the mean—only nonstationarity. Part

(a) has A = 1, and (b) has A = 20. The blurred images in each part

have been restored using the maximum Q filter and the space-variant

and space—Invariant minimum mean—squared—error filters . It can be seen

from this figure that there is very little difference in performance

between the space—variant and space—invariant minimum mean—squared-error

filters. This difference does not depend significantly on the value of

the object center mean-to-variance ratio A, whereas, in earlier figures

of space—variant blurs , the loss in performance suffered , when using the

space—invariant filter , depended strongly on the value of A. As before ,

2~
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Log 10

Fig . 8. Q for nonstationary object mean . Two A values :
(a) A = 1; (b) A = 20 . Filters used : (1) minimum mean-
squared—error space variant ; (2) min imum mean—squared—er—
roz space invariant ; (0) maximum Q f i l t e r.
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the maximum value of Q is relatively easy to compute and parallels the

minimum mean-squared -erro r Q. Somet)iing not seen in this figure is the

extreme difficulty in computing a space—invariant maximum—Q-algorithm

filter when the variance is stationary .

Figure 9 shows Q plotted for images restored with four filters.

These are the space—variant and space—invarIant minimum mean—squared-

error filters, the maximum Q filter, and the filter derived using the

maximum Q algorithm with a space—invariant filter . Part (a) has van-

ance-.only nonstationary and part (b) has mean and variance nonstationary.

Note here that the crosses, which are the results of space-Invariant fil-

tering, show quality comparable to the two space—variant filters . This

indicates a computationally workable method of doing useful filtering on

nonstationary blurred Image ensembles. Here, the maximum Q filter and

space—invariant maximum-Q—algorithm filter are both easy to calculate

and both parallel their respective minimum mean-squared—error filters in

performance.

A further look at Fig. 9 reveals two related points . First , as might

be expected, the addition of the nonstationary mean condition of Fig. 8

to the nonstationary variance of Fig. 9(a) leads to a drop In both the

maximum Q and the minimum mean-squared-error Q. The levels of Q for

the space—invariant maximum-Q--algorithm filter and the minimum mean-

squared—error filter are increased by allowing the mean to become non—

stationary. This is probably due to “cancelling” errors , another acci-

dental improvement.
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Fig. 9. Q for two object statistics : (a) nonstationary
covaniance ; (b) nonstationary mean and covaniance . Dif-
ferent filters used : (1) minimum mean-squared—error space
variant ; (2) min imum mean—squared—error space invariant ;
(C) maximum Q; (+) maximum—Q—algorithTn space invariant .
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(d) Filter Error Ana lysis

Often , comments are made to the effect that there are many theoret-

ically good ways to restore degraded images , but they often do not work

well due to one ’s inability to estimate the object statistics and blur

impulse responses accurately. We have therefore done the following

short study concerning the performance of our filters when they are

derived from incorrect statistical or blur response assumptions .

The curves of Fig . 10 show Q for a space-variant blur with W = 8

and W = 16. The object ensemble is stationary. Part (a) shows the

performance of a space—variant minimum mean—squared—error filter , and

part (b) is that for a maximum Q algorithm filter . The three curves

in each part Include restoration with a properly constructed filter and

two restorations with filters constructed with ± l0°~ errors in both W- 
C

and W .

In Figs . 11 and 12, a space—invariant blur, Wb = 8, is used with

an object nonstationary in both mean and variance. In both figures , the

filters used are , as in Fig . 10, one accurate filter and one filter with

approximately 10% errors in some parameter. In Fig. 11, the error fil-

ters have a ±9% error In the object width W .  In Fig . 12, there is a

±10% error in the blur width W
b
.

As can be seen from these figures , an approximately 10% error in

the estimated object statistics produces only a few percent reduction in

image quality, whereas roughly the same error in estimated blur produces ,

at least for large N,. a dramatic loss of quality. The basic reason for

this dramatic difference is as foflows. An error in object statistics

affects only the point where the “cutoff” of the Wiener filter occurs .

29
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Fig. 10.’ Q for stationary object and space—variant blur,
W~ = 8 and We = 16, for mismatched restoration filter.
Part (a) minimum mean-squared—error space—variant filter ,
and part (b) maximum Q filter. In both parts , filter
parameters arc : U)  

~~ 
= 8 and We = 16; (2) W

~
=8.8

and W = 17 .6; (3) W = 7 .2 and W = 14.4.c e
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log 10 N

Fig. 11. Q for space-invariant Wb = 8 blur and nonsta-
tionary object mean and covarlance , W0 = 34, for filter
mismatched in object width . Part (a) space—variant mini-
mum mean—squared-error filter, and part (b) maximum Q
filter . In both parts , filter parameters are: (1)
w = 34~ (2) W = 3?.5~ (3) W = 30.5.
0 0 ‘ 0
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Fig. 12. Q for space—variant Wb = 8 blur and ~ionstation—ary mean and covariance, W0 = 34, for filter mismatched
in blur width . In part (a) minimum mean—squared-error
space—varIant filters and part (b) maximum Q f i l t e r s .
In both parts : (1) 

~b
8
’ (2) W

b =8~
8; (3) W

b =7.2.
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This effect t hould be most pronounced for small N where the signal-to-

noise ratio ~s small. The only error this produces Is either a loss of

signal or increase in noise for those spatial frequencies near the cut-

off .

An error in estimating the blur , on the other hand , means that ,

when N becomes large and the Wiener filter approaches an Inverse f 11—

ter, one is only removing a part of the existing blur , or possibly adding

additional bur. This effect will be known to anyone familiar with in-

verse filtering techniques .

This result is somewhat encouraging , however, since, in the atmos-

pheric and compensated imaging systems of interest here, the amount of

blur present can be measured with reasonable accuracy while the object

statistics are relatively unknown a priori.
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APPENDIX A

In this appendix, we derive a set of conditions which a linear

filter must satisfy to insure at least a locally maximum value of image

quality Q. We begin with the definition of Q in the discrete formu-

lation

~~~~~ 
(A.1)

where —

—2 / ‘.t
~ ~~N Tr(~[H1 [B1f~R1(B J (H]

) 
. (A.2)

and

= Tr
(O1](~ 

[0 

~~ ~ + ~~~~~~~~~~~~~~~~ 
~~~~

-2’. “ ‘.t  t 2 - 2’ . ”  ‘.t
— 2kN cs1(~R IcR ] (HI + k N (SI(~R ItS] . (A.3)

Tho procedure we shall follow here Is to assume a form for an ar-

bitrary filter (Hi which includes a scalar parameter t. We then find

the first and second partial derivatives of Q with respect to t and

)ose appropriate conditions on these to guarantee a local maximum in

Q. In order to simplify the maximization procedure , the quantity log Q

will be maximized instead of Q itself. This is permissible for Q ~ 0

since the logarithm is a monotonlcally increasing function.

If (H ~~1 is the restoration filter which produces a maximum image

quality Q ,  then any arbitrary filter (HI may be written

34
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[H] = IJ1~1Q
l + t[G] (A.4)

where t is a scalar and (GI is some m a t r i x .  A necessary cond iti on for

an extremum or po in t—of—inf l ec t ion  in Q Is

~~ 
= 0 VIG] (A.5)

where V means “for all ,” and a necessary condition for a maximum is

log 
~ <0 vfG] . ~A .6)

t=0

Beginning with condition (A.5), it is first useful to note that

log Q = log...~ - log ~ . (A.7)

Substituting (A.4) into (A.3) and (A.2), and l~aking the derivative of

the logarithms gives

~ log Q(t) 
2~~ ~~~~~~~~~~~~~~~~~~~~~ + t[G1 [BI [~R0

][B]t {G1
t)

— 

~ (t )

/ t t —2 ‘. “ A t
2Tr ((H ] [Dl [0] + t EG] [Dl [G I — kN [G I [B I [~ I Es]

\ MQ o
— 

~ (t )

(A .8)

where Q(~
), ~

(.), and ~(- ~) indicate the values of Q, ~5, and ~,
respectively, with t = ~~. Letting t approach zero gives
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2~~~~~~~(H~Q 1EB1 ( 01E~Ii (G1 )

t=o ~5( t = 0 )

/ —2 ‘. “

2Tr(f}I ][D 1[G1 — kN 1G1 CB1 [~ ][sI
— 

6(t = 0) 
° 

= 0 V(G ]

(A.9)

This resulting condition (A.9) will be satisfied if

(H
MQ
1([~~~~~

1 

~
°] + 

~~~~~~~ 
1) 

~~1~~~ 1~~ 1
t) 

- ~~~(~ ](~~~]~~~]t (01

(A.10)

where (0) is a matrix with all zero elements and again

%ax = Q(0) = ~~ . (A.11)

This analysis eads to the following expression for the maximum Q f 11—

ter:

~ MQ
1 = kif~](&}~~3

t([
~~~~] 

~
°] + 

~~ 
~~~~~~~~~~~~~~

(A.12)

Here , it must be remembered that in most cases is not known with-

out fi rs t  knowing This filte: is sure to produce a local extre-

mum or point of inflection In Q.

In order to insure a local maximum , we need condition (A.6). Taking

the derivative of (A.8) at t = 0 gives
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1tB] (G]t) ~~ Tr(2[H~1Q
][BJ[1R0

][B] [G1 )
~t
2 I — — 

, 2 (Ø)
It=o

‘-‘

— 

Tr (2 Co I [DI [o] t) 
Tr (2 [}i]~~~ [Dl [0] t — 2kN2 [0] [B] (g~](S1 /

— +
6( 0) 2

(A .13)

After  some manipulation , we have

~~~~ ~~~max 
1 0 

/
(~R](B] )[G]

log Q 
— - 

2
~~~~x 

Tr ( / r~ ’. ~ o~ ~~ 
-

[o]( [B] 
~~~~~~ ~~ 

N [B

~ 
A ~~ A

~t
2 I — 6( 0)

I t~~

/ 
~1atr ix \ /~~r~g Q  \ (A .14)— 

(,~expression) 
. 

at

where we have recognized the last factor as the f i rs t  derivative at t = 0 .

Finally, using (A.6) with (A.14) gives the condition

( I  ‘
~~~~A ~~— (G]~ (B] 0 + ~~~~ 

‘
)i~[B][~R1 (B]2NQ~ ~( /~~~~ 

0] (%a
x

1 

t)
~~~
t)

\Lo a x /

<0 V[G]— 

~(O)

(A .15)

This condition Is insured if and only if

r~ 01
I ~~~~~ ~ 

Q -1
(B] 0 + 

max 
~~~~~~ ]l~l~ > [0] . (A.16)

Qmax
[o
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Thus , if Conditions (A.9) and (A.l5) are met , we can be assured of
a f i l t e r  (H~1Ql which will produce a local maximum in Q.
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